Drosophila TRPM Channel Is Essential for the Control of Extracellular Magnesium Levels
نویسندگان
چکیده
The TRPM group of cation channels plays diverse roles ranging from sensory signaling to Mg2+ homeostasis. In most metazoan organisms the TRPM subfamily is comprised of multiple members, including eight in humans. However, the Drosophila TRPM subfamily is unusual in that it consists of a single member. Currently, the functional requirements for this channel have not been reported. Here, we found that the Drosophila TRPM protein was expressed in the fly counterpart of mammalian kidneys, the Malpighian tubules, which function in the removal of electrolytes and toxic components from the hemolymph. We generated mutations in trpm and found that this resulted in shortening of the Malpighian tubules. In contrast to all other Drosophila trp mutations, loss of trpm was essential for viability, as trpm mutations resulted in pupal lethality. Supplementation of the diet with a high concentration of Mg2+ exacerbated the phenotype, resulting in growth arrest during the larval period. Feeding high Mg2+ also resulted in elevated Mg2+ in the hemolymph, but had relatively little effect on cellular Mg2+. We conclude that loss of Drosophila trpm leads to hypermagnesemia due to a defect in removal of Mg2+ from the hemolymph. These data provide the first evidence for a role for a Drosophila TRP channel in Mg2+ homeostasis, and underscore a broad and evolutionarily conserved role for TRPM channels in Mg2+ homeostasis.
منابع مشابه
Magnesium Excretion in C. elegans Requires the Activity of the GTL-2 TRPM Channel
Systemic magnesium homeostasis in mammals is primarily governed by the activities of the TRPM6 and TRPM7 cation channels, which mediate both uptake by the intestinal epithelial cells and reabsorption by the distal convoluted tubule cells in the kidney. In the nematode, C. elegans, intestinal magnesium uptake is dependent on the activities of the TRPM channel proteins, GON-2 and GTL-1. In this p...
متن کاملMg2+ Homeostasis: The Mg2+nificent TRPM Chanzymes
TRPM6 and TRPM7 are distinct from all other ion channels in that they are composed of linked channel and protein kinase domains. Recent studies demonstrate that these 'chanzymes' are essential for Mg(2+) homeostasis, which is critical for human health and cell viability.
متن کاملConcentration dependent effect of morphine, aspirin, capsaicin and chili pepper hydro alcoholic extract on thermal and chemical pain model in fruit fly (Drosophila melanogaster)
Introduction: Pain research using animal models is related to ethical concerns, so invertebrates and insects have been recommended by researchers. In the present study, the nociceptive and antinociceptive effects of capsaicin, aspirin, morphine and chili extract were examined using fruit fly (Drosophila melanogaster) as an alternative for rodent pain model. Methods: Stage 3 of larvae and ad...
متن کاملAre the transient receptor potential melastatin (TRPM) channels important in magnesium homeostasis following traumatic brain injury?
Traumatic brain injury (TBI) confers a major burden to Western society and effective treatments are urgently required to improve the long-term deficits that inflict TBI survivors. Depletion of intracellular Mg(2+) is a well-known phenomenon occurring after TBI and is associated with poor neurological outcome. However, despite success in pre-clinical experimental studies, therapies utilizing Mg(...
متن کاملThe Relationship Between Maternal Serum Levels of Calcium, Phosphorus and Magnesium with Preterm Labor: A Case-Control Study
Introduction: Preterm delivery is one of the essential midwifery problems, which causes a large proportion of infant mortality even in advanced societies. Despite advances in pregnancy care, the frequency of preterm delivery has not decreased. This study aimed to determine the relationship between serum calcium, phosphorus, and magnesium level with preterm labor in pregnant women. Methods: In ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2010